UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

Paper 3 October/November 2004 1 hour 15 minutes Candidates answer on the Question Paper. No Additional Materials required. Candidate Name Centre Number Candidate Number

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams, graphs or rough working.

WRITE IN THE BOXES PROVIDED ON THE QUESTION PAPER

DO NOT WRITE IN THE BARCODE.

DO NOT WRITE IN THE GREY AREAS BETWEEN THE PAGES.

Do not use staples, paper clips, highlighters, glue or correction fluid.

You may use a calculator.

Answer all questions.

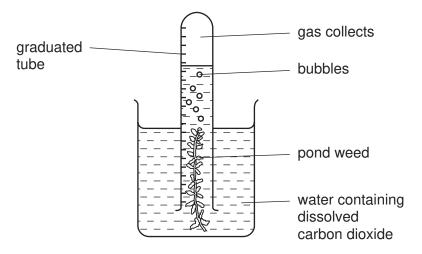
The number of marks is given in brackets [] at the end of each question or part questions.

A copy of the Periodic Table is printed on page 16.

ner's Use

This document consists of 15 printed pages and 1 blank page.

IB04 11_0620_03REP/RP © UCLES 2004



[Turn over

Two of the gases in air are nitrogen and oxygen. Name two other gases present in unpolluted air.	Exami Us
[2]	
Two common pollutants present in air are sulphur dioxide and lead compounds. State the source and harmful effect of each.	
sulpnur dioxide	,
source	
harmful effect [3]	•
lead compounds	,
source	
harmful effect [2]	
Respiration and photosynthesis are two of the processes that determine the percentage of oxygen and of carbon dioxide in the air. (i) Name another process that changes the percentages of these two gases in air.	
[1]	
(ii) The equation for photosynthesis is given below.	
$6CO_2 + 6H_2O \longrightarrow C_6H_{12}O_6 + 6O_2$	
This is an endothermic reaction.	
Complete the reaction for respiration.	
C ₆ H ₁₂ O ₆ + 6O ₂ → +	
This is an reaction.	
	unpolluted air. [2] Two common pollutants present in air are sulphur dioxide and lead compounds. State the source and harmful effect of each. sulphur dioxide source harmful effect [3] Respiration and photosynthesis are two of the processes that determine the percentage of oxygen and of carbon dioxide in the air. [4] Name another process that changes the percentages of these two gases in air. [6] The equation for photosynthesis is given below. 6CO₂ + 6H₂O → C₅H₁₂O₅ + 6O₂ This is an endothermic reaction. Complete the reaction for respiration.

(d) The rate of photosynthesis of pond weed can be measured using the following experiment.

For Examiner's Use

(i)	Describe how	you could	show that the	gas collected in	this experiment	is oxygen.
-----	--------------	-----------	---------------	------------------	-----------------	------------

[1]

l [3	21
լ	

(iii) What would be the effect, and why, of moving the apparatus further away from the light?

[2]

The salt acid.	copper(II) sulphate can be a	prepared by rea	cting copper(II) c	oxide with sulphuric
Complete	e the list of instructions for ma	aking copper(II) s	ulphate using six	of the words below.
blue	e cool	dilute	filter	
	saturated sulphate	white	oxide	
Instructio	ons			
1	Add excess copper(II) oxide beaker and boil it.	e to		sulphuric acid in a
2		to remove the	unreacted copper	r(II) oxide.
3	Heat the solution until it is			
4		the solution to	form	
	coloured crystals of copper ((II)		

© UCLES 2004

2

3 The simplest alcohol is methanol.

For Examiner's Use

(a) It is manufactured by the following reversible reaction.

CO (g) +
$$2H_2$$
 (g) \rightleftharpoons CH₃OH (g) 300 °C 30atm

(i)	Reversible reactions can	come to equilibrium.	Explain the ter	m <i>equilibrium</i>
-----	--------------------------	----------------------	-----------------	----------------------

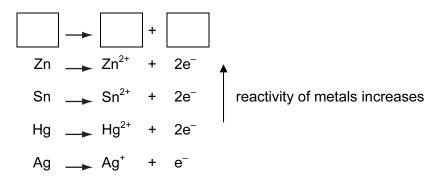
[1]

(ii) At 400 $^{\circ}\text{C}$, the percentage of methanol in the equilibrium mixture is lower than at 300 $^{\circ}\text{C}$. Suggest an explanation.

[2]

(iii) Suggest two advantages of using high pressure for this reaction. Give a reason for each advantage.

advantage reason


advantage reason [5]

(b) (i)	Complete the equation for the combustion of methanol in an excess of oxygen.	
	CH ₃ OH +	[2]
(ii)	Complete the word equation.	
(:::)	methanol + ethanoic acid →	[2]
(111)	Methanol can be oxidised to an acid. Name this acid.	
		[1]

© UCLES 2004

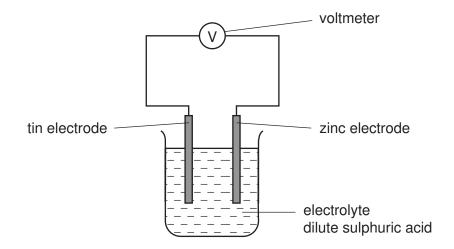
4 In the following list of ionic equations, the metals are in order of reactivity.

For Examiner's Use

- (a) (i) In the space at the top of the series, write an ionic equation that includes a more reactive metal. [1]
 - (ii) Define oxidation in terms of electron transfer.

[1]

(iii) Explain why the positive ions are likely to be oxidising agents.


	[1]

(iv) Which positive ion(s) can oxidise mercury metal (Hg)?

[1

(b) The following diagram shows a simple cell.

For Examiner's Use

(i) Predict how the voltage of the cell would change if the tin electrode was replaced with a silver one.

(ii) Which electrode would go into the solution as positive ions? Give a reason for your choice.

(iii) State how you can predict the direction of the electron flow in cells of this type.

© UCLES 2004

5 Strontium and sulphur chlorides both have a formula of the type XCl_2 but they have different properties.

For Examiner's Use

property	strontium chloride	sulphur chloride	
appearance	white crystalline solid	red liquid	
melting point / °C	873	-80	
particles present	ions	molecules	
electrical conductivity of solid	poor	poor	
electrical conductivity of liquid	good	poor	

	cal conductivity of solid	poor	poor
electri	cal conductivity of liquid	good	poor
		s are similar because both eleup VI elements both have a v	
			[2
mo Use	aw a diagram showing th lecule of sulphur chloride. e x to represent an electro e o to represent an electro		cy electrons in one covaler
]
Explain	the difference in electrical	conductivity between the follow	owing.
(i)	solid and liquid strontium	chloride	
]
(ii)	liquid strontium chloride	and liquid sulphur chloride]

6	Polymers are extensively used in food packaging. Poly(dichloroethene) is used because
	gases can only diffuse through it very slowly. Polyesters have a high thermal stability and food can be cooked in a polyester bag.
	1000 can be cooked in a polyester bag.

(a) (i) The structure of poly(dichloroethene) is given below.

$$\begin{pmatrix}
H & Cl \\
I & I \\
C & C
\end{pmatrix}$$
H Cl

Draw the structural formula of the monomer.

l	
l	
l	
l	[1]
	111
l	111
l	111
	L · J
l	
l	
l	

(ii) Explain why oxygen can diffuse faster through the polymer bag than carbon dioxide can.

[2]

(b) (i) A polyester can be formed from the monomers $HO-CH_2CH_2-OH$ and $HOOC-C_6H_4-COOH$. Draw the structure of this polyester.

(li)	Name a naturally occurring class of compounds that contains the ester linkage.
	[1]
(iii)	Suggest what is meant by the term thermal stability.
	[1]
(c) (i)	Describe two environmental problems caused by the disposal of plastic (polymer) waste.
	[2]
(ii)	The best way of disposing of plastic waste is recycling to form new plastics. What is another advantage of recycling plastics made from petroleum?
	[1]

(a)	(i)	Write a symbol equation for the act	ion of heat on zinc hydroxide.	
				[2]
	(ii)	Describe what happens when solid	sodium hydroxide is heated	strongly.
				[1]
(b)	Wha	t would be observed when copper(II) nitrate is heated?	
				[3]
(c)	forn was	(III) sulphate decomposes when ned and the volume of sulphur trios heated. ss of one mole of Fe ₂ (SO ₄) ₃ is 400 g	xide produced when 10.0 g o	
		$Fe_2(SO_4)_3$ (s) \longrightarrow	► Fe ₂ O ₃ (s) + 3SO ₃ (g)	
		Number of moles of $Fe_2(SO_4)_3 =$		
	Ν	umber of moles of Fe ₂ O ₃ formed =		
		Mass of iron(III) oxide formed =	g	
	N	umber of moles of SO ₃ produced =		l
	V	olume of sulphur trioxide at r t p =	dm ³	[5]

© UCLES 2004

7

8 The alkenes are a homologous series of unsaturated hydrocarbons.

For Examiner's Use

(a) The table below gives the names, formulae and boiling points of the first members of the series.

name	formula	boiling point/°C	
ethene	C ₂ H ₄	-102	
propene	C ₃ H ₆	-48	
butene	C ₄ H ₈	-7	
pentene	C ₅ H ₁₀	30	
hexene			

		Пехепе			
(i)	Complete point.	e the table by givir	ng the formula of h	exene and by pred	dicting its boiling
	point.				[2]
(ii)		the formula of the ur working.	alkene which has	a relative molecul	ar mass of 168.
					[2]
Des	scribe a te	est that will distinguis	sh between the two	isomers, but-2-ene	and cyclobutane.

(b)

test	
result with but-2-ene	
result with cyclobutane	[3]

th water?
[1]
rogen chloride
[1]
[1]
[2]

© UCLES 2004

(c)

BLANK PAGE

Every reasonable effort has been made to trace all copyright holders where the publishers (i.e. UCLES) are aware that third-party material has been reproduced. The publishers would be pleased to hear from anyone whose rights they have unwittingly infringed.

University of Cambridge International Examinations is part of the University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

DATA SHEET The Periodic Table of the Elements

	0	Heium	20 Neon 10 40 Argon	84 Kr Krypton	Xe Xenon 54	Radon 86		175 Lu Lutetium 71	Lr Lawrencium 103
Group	IIΛ		19 Fluorine 9 35.5 C1	80 Br Bromine		Astatine		173 Yb Ytterbium 70	
	IA		16 O O O O O O O O O O O O O O O O O O O	Selenium		Po Polonium 84		169 Tm Thulium 69	Md Mendelevium 101
	^		Nitrogen 7 31 Phosphorus		Sb Antimony 51	209 Bis Bismuth		167 Er Erbium 68	Fm Fermium 100
	ΛΙ		Carbon 6 Carbon 8 Silicon Silicon	E		207 Pb Lead		165 Ho Holmium 67	Einsteinium 99
	III		11 B Boron 5 27 At Auminium	70 Ga Gallium 31	115 In Indium 49	204 T t Thallium 81		162 Dy Dysprosium 66	Cf Californium 98
				65 Zn Zinc	Cd Cadmium 48	201 Hg Mercury		159 Tb Terbium 65	Bk Berkelium 97
				64 Copper	Ag Silver 47	197 Au Gold		157 Gd Gadolinium 64	
				59 Nickel	106 Pd Palladium 46	195 Pt Platinum 78		152 Eu Europium 63	Am Americium 95
				59 Cobalt	103 Rh	192 Irdium		150 Sm Samarium 62	Pu Plutonium 94
		Hydrogen		56 Fe	101 Ruthenium	190 Osmium 76		Pm Promethium 61	Np Neptunium 93
				Mn Manganese	TC Technetium	186 Renium		Neodymium 60	238 U Uranium 92
				52 Cr Chromium 24	96 Mo Molybdenum 42	184 W Tungsten 74		141 Pr Praseodymium 59	Pa Protactinium 91
				51 Vanadium	Niobium 41	181 Ta Tantalum 73		140 Ce Cerium	232 Th Thorium
				48 Ti Tiranium	91 Zr Zirconium 40	178 Hf Hafnium 72			nic mass Ibol nic) number
				45 Sc Scandium	89 × 4 × 4 × 4 × 4 × 4 × 4 × 4 × 4 × 4 ×	139 La	Actinium	J series eries	a = relative atomic mass X = atomic symbol b = proton (atomic) number
	Ш		Beyllium 4 24 Mg Magnesium	Calcium Calcium	Strontium	137 Ba Barium 56	226 Radium 88	*58-71 Lanthanoid series 90-103 Actinoid series	в X
	-		Lithium 3 Lithium 3 Na Sodium	39 X Potassium	85 Rubidium 37	Caesium 55	Fr Francium 87	*58-71 L 90-103	Key

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).